Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer.
نویسندگان
چکیده
We previously reported that our novel compound 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (VN/124-1) is a potent 17alpha-hydroxylase/17,20-lyase (CYP17) inhibitor/antiandrogen and strongly inhibits the formation and proliferation of human prostate cancer LAPC4 tumor xenografts in severe combined immunodeficient mice. In this study, we report that VN/124-1 and other novel CYP17 inhibitors also cause down-regulation of androgen receptor (AR) protein expression in vitro and in vivo. This mechanism of action seems to contribute to their antitumor efficacy. We compared the in vivo antitumor efficacy of VN/124-1 with that of castration and a clinically used antiandrogen, Casodex, and show that VN/124-1 is more potent than castration in the LAPC4 xenograft model. Treatment with VN/124-1 (0.13 mmol/kg twice daily) was also very effective in preventing the formation of LAPC4 tumors (6.94 versus 2410.28 mm(3) in control group). VN/124-1 (0.13 mmol/kg twice daily) and VN/124-1 (0.13 mmol/kg twice daily) + castration induced regression of LAPC4 tumor xenografts by 26.55% and 60.67%, respectively. Treatments with Casodex (0.13 mmol/kg twice daily) or castration caused significant tumor suppression compared with control. Furthermore, treatment with VN/124-1 caused marked down-regulation of AR protein expression, in contrast to treatments with Casodex or castration that caused significant up-regulation of AR protein expression. The results suggest that VN/124-1 acts by several mechanisms (CYP17 inhibition, competitive inhibition, and down-regulation of the AR). These actions contribute to inhibition of the formation of LAPC4 tumors and cause regression of growth of established tumors. VN/124-1 is more efficacious than castration in the LAPC4 xenograft model, suggesting that the compound has potential for the treatment of prostate cancer.
منابع مشابه
Androgen receptor inactivation contributes to antitumor efficacy of 17A-hydroxylase/17,20-lyase inhibitor 3B-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5, 16-diene in prostate cancer
We previously reported that our novel compound 3Bhydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (VN/124-1) is a potent 17A-hydroxylase/17,20-lyase (CYP17) inhibitor/antiandrogen and strongly inhibits the formation and proliferation of human prostate cancer LAPC4 tumor xenografts in severe combined immunodeficient mice. In this study, we report that VN/124-1 and other novel CYP17 inhibito...
متن کاملManagement of Castration-resistant Prostate Cancer
s?&vmview;=abst_detail_view&confID;=114&abstract; ID=95300; cited November 9, 2012]15. Ryan CJ, Shah S, Efstathiou E, et al. Phase ii study of abiraterone acetate in chemotherapy-naive metastatic castrationresistant prostate cancer displaying bone flare discordant withserologic response. Clin Cancer Res 2011;17:4854–61.16. Bianchini D, Sandhu SK, Cassidy AM, et al. Durable radio-lo...
متن کاملC19-steroids as androgen receptor modulators: design, discovery, and structure-activity relationship of new steroidal androgen receptor antagonists.
Dehydroepiandrosterone (DHEA), the most abundant steroid in human circulating blood, is metabolized to sex hormones and other C19-steroids. Our previous collaborative study demonstrated that androst-5-ene-3beta,17beta-diol (Adiol) and androst-4-ene-3,17-dione (Adione), metabolites of DHEA, can activate androgen receptor (AR) target genes. Adiol is maintained at a high concentration in prostate ...
متن کاملAntitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven.
Abiraterone acetate is a potent, selective, and orally bioavailable small molecule inhibitor of CYP17, an enzyme that catalyzes two key serial reactions (17 alpha hydroxylase and 17,20 lyase) in androgen and estrogen biosynthesis. Clinical trials have confirmed that specific inhibition of CYP17 is safe and results in clinically important antitumor activity in up to 70% of castrate patients with...
متن کاملTargeting of CYP17A1 Lyase by VT-464 Inhibits Adrenal and Intratumoral Androgen Biosynthesis and Tumor Growth of Castration Resistant Prostate Cancer
Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a validated treatment target for the treatment of metastatic castration-resistant prostate cancer (CRPC). Abiraterone acetate (AA) inhibits both 17α-hydroxylase (hydroxylase) and 17,20-lyase (lyase) reactions catalyzed by CYP17A1 and thus depletes androgen biosynthesis. However, coadministration of prednisone is required to suppress the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 7 8 شماره
صفحات -
تاریخ انتشار 2008